CHEMISTRY 24a
Winter Quarter 1997

Instructor: Chan
Lecture 4

Date: January 15, 1997

Reading Assignment
Eisenberg & Crothers: Chapter 4

Second Law of Thermodynamics
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For a reversible process, dS =

For an irreversible process, dS >

dQ = heat input to system

or dS 2 Y
T T = temperature of system (absolute )

(Similar expression for surroundings!)

A concrete example involving heat transfer only
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e Equilibrium
 How many grams of ice must melt to reach equilibrium?

Specific heat of water =lcalgl°CT
AH fusion = 80 cal g_l

To attain equilibrium, must melt X grams of ice to cool 4 grams of HyO from

10°C to 0°C.
or (X g) (80 cal g71) = (4g)(1 cal g7 1°C71)(10°C)
80 X = 40 x = 0.5g

» So process

H,O, 4 grams at 10°C H70, (4.5) grams
+ —> at 0°C
1 gramice at 0°C +0.5 gram ice at 0°C

¢ ASprocess =?

melting ~
AS; =J‘-dQ#V— - Orev _0.58 80 cal g 1
ice Tice Tive 273K

constant T
=0.1465 cal K~!

do 273 CdT Ll e (273 dT
AS = | =€V — =4g. ] cal C
Hy0 J Tyater J283 T\yater g J 283 T'yater

_ 273 o _ o]
—4ln(283) cal K- =—0.1439 cal K



ASproce:ss = ASjce + ASHQO

= (0.1465 - 0.1439) cal K1
= 0.0026 cal K71

= (0.0026) (4.184 T K1)
=0.0109T K1

1 kcal mol'™! = 4,184 kJ mol™1
1 kcal = 4,184 kJ
4.1847

1 cal

Entropv_changes due to change in volume

consider|ideal |gas & reversible isothermal expansion

Recall First Law: dE =dQ — Py dV

Reversible process = dE =dQyrey — PsystemdV

=TdS — PdV

Isothermal expansion of ideal gas = dE=0

E(T) only
Therefore TdS = PdV = ETR;Z av
or ds = ﬂ av
%
AS = ij R v =nRin-L

Vi



This result suggests that:

Sideal gas

= constant + nRIlnV
perfect gas

However, since pV = nRT here,

S.
ideal gas . ¢opstant + ann(ﬂ)
perfect gas P
= f(n,T)— nRInP gas
So entropy of ideal gas increases with an isothermal volume increase.
- Statement is true in general.

Important Implication of Result - Entropy of Mixing

Pure substance S(N,T,V) or S(n,T,V) state function

Constant mass (closed system S(T,V)

7N

convenient independent variables

* So can calculate AS for one of the processes considered earlier.
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N;,T,V; N¢, T, Vg
(or ny) T or (nf)
volume accessible
to gas molecules

ng=n =n depepds on initial
and final states only
Ve S 1s a state function!
... ASprocess = ann'V_
l

» What happens when both sides of the chamber are filled by the same ideal

gas at the same pressure?

I —P
/ AN
n nr nr =n;+ny
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Vf'—'V[l-i-Vrl
Now Pr=P} =P/}
: : RT RT +n )RT
because  V, =V, +V] = o n',)
Pll Prl I)ll
_(n+n)RT
g Vf— p;

—é—sl )TOCESS

S is an extensive property =  S(n,T,V) or S(n,T,P)



Will later show that
Note that f (T ) & g(T ) depend

Stranslation = nR{f (T)+ lnz} on the nature of the molecules as
ideal gas well, e.g. mass

or  Sgranslation = nR{g(T) —InP}
ideal gas

from which it follows that
Vf

l

AS;sothermal =nDRIn——  as shown earlier.

expansion
for n moles
of ideal gas

Now for one process here,
ASprocess = S(nr, T,V ¢) = 8(n, T, Vi) = S(ne, T, V)

_ Vs
= nTR{f(T) +ln——T—}
—nR{ (T)+an—l}

v,
—nrR{f(T) + ln—;——}

.
Vf — Vli — Vri
nf nn
or  Pp=P}=P/}

=0 because

Could have obtained the same result as follows:

ASprocess=S(”T,T,Pf)—S(ne,T,Pi)—S(nr,T,Pri)
=npR{g(T) - In Py}
—an{g(T)—ln Pli}
—nrR{g(T)—ln Pri}
=0 because Py = Pi=pP/}



‘ 7
« What happens when the two sides of the chamber are initially occupied by

a different gas at the same pressure?

Process equivalent to sum of following two processes.

A A A A A
vacuum S A A
I-' A A A
1deal
gas A
nA» nA
VzA Vf =Vr
T;=T Te=T
RT naRT
PA = nA pA =4
k ViA f Vr
ideal
@ / gas B
B g B B B
vacuum _— B
B B B B
np
Volume or phase Vf =Vr
space accessible to —
each of the gases per nBB Ty=T
mole has increased!! Vi p.B ngRT
T;=T N T
P; B _ npRT



ASprocess = AS4 + ASp
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. ASprocess = —nAR lrlXA - nBR lnXB
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» General Formillé for Entropy of Mixing of Ideal Gases

ASpiving = —1T RZ XiInX; (if per mole of mixture, np=1)
1

N

components
in mixture

Entropy Changes in_General

ASprocess . ASgystem + ASsurroundings
Must always include ASsystem + ASgurroundings.
For each part (i.e., system or surroundings), can take advantage that S =

entropy is a state function; i.e., S(n,T,V) orS(n,T,P)

First Law
dE =dQ — P,y dV (general)
dE = dQyey — PdV (reversible)
dE =TdS — PdV general
oo ds=dEXPYV

Since we may express dE further, e.g.

oE oE
ae=(3) ar (5] av
T )y, vV )y

oE
= CVdT + (‘B—V)T av

C 1|(JE
we have ds = —TK dT + a KWJT + P}dV completely general!
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One equation for system and another for surroundings.

« For ideal gas. (
JEY _ _nRT  I|(QE _nR
(W)T—O&P— v , SO TKEV)T-FP}—V
CV .
L dS= dTl + '—"‘/—'dv (ldeal gaS)

and ASideal gas = J JVf nRT

Ty Vs
= Cvln( T, )+ ann( v, )

- For constant pressure processes, more convenient to recast above in
terms of enthalpy H.

dE =TdS — pdV general
Now dH =dE+ pdV +VdP general

Combining dH =TdS +Vdp

Since we may express dH further, e.g.

(oH OH OH
i1=(22) ar () ap-coar +(2) ar

T

T oP
For a constant pressure process, then - ¢ 47=0
as =TS0 ar
T; T

Note that if phase changes take place during process, there exist singularities in Cp, but -

AH, transition
Ttransition

AS phase _1

- .. CpdT =
transition T transition jtransmon P
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Cyclic Processes

For system that has undergone a complete cycle,

ASsystem =0 since $dS=0 & S is a state function.

But Msystem + ASsurrOundings = §dsystem + ASSLlrrOI/lnding

20  depending upon whether the process
Is reversible or irreversible

al édssystem + surrounding 20

Example (p. 89-91 text) of a cyclic process

Step @
T,Vy, Py | T.,V2,P2
reversible
A 1sothermal
cxpansion Reversible AS(Q) :I—Qm-d T :
adiabatic 0
Reversible expansion =
adiabatic Step@ P no heat
compression Step Q) lnpllt to
system
v ¥
Ste
T°,V4,Py € QO 1,V3,P3
reversible
1sothermal

compression



ASg tepsystem
o . Vo
Step 1 Reversible isothermal expansion ann(—‘;]—)
Step 2 Reversible adiabatic expansion 0
- . V4
Step 3 Reversible isothermal compression nRin V—3
Step 4 Reversible adiabatic compression 0

ASeqs  =nRln| v2 |+ nR1n[ V£
e V Vv
System 1 3

V2 Va
Need v, and Vs

From step 2, adiabatic reversible expansion

B

From step 4, adiabatic reversible compression

F)-E

Va_ V1
ot V3 V4
Vo_V3
or TR

" ASggs  =nRin V2 — nRin Vs =0
System Vi V4

12



Now  Osystem = Ostep 1+ LPstep 2 + Pstep 3 + Lstep 4

_ Va o V4
—nRTln(V])+0+nRTln(V3)+0

_ Va aol Y4
—nRTln(V])+nRTln(V3) #0

dOrey

This result probably prompted Clausius to introduce S and dS = -






