#### **CHEMISTRY 24a**

Winter Quarter 1997

Instructor: Chan

Lecture 4

<u>Date</u>: January 15, 1997

### Reading Assignment

Eisenberg & Crothers: Chapter 4

### Second Law of Thermodynamics

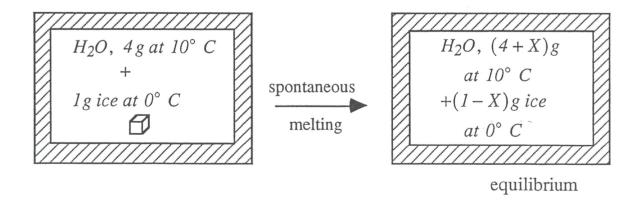
For a reversible process,  $dS = \frac{dQ_{rev}}{T}$ For an irreversible process,  $dS > \frac{dQ_{irrev}}{T}$ 

or 
$$dS \ge \frac{dQ}{T}$$

 $dQ \equiv heat \ input \ to \ system$   $T \equiv temperature \ of \ system \ (absolute)$ 

(Similar expression for surroundings!)

## A concrete example involving heat transfer only



$$\Delta E \text{ process} = 0$$

$$\Delta S$$
 process = ?

#### • Equilibrium

How many grams of ice must melt to reach equilibrium?

Specific heat of water = 1 cal g<sup>-1</sup> 
$$^{\circ}$$
C<sup>-1</sup> = 80 cal g<sup>-1</sup>

To attain equilibrium, must melt  $\underline{X}$  grams of ice to cool  $\underline{4}$  grams of  $\underline{H}_2O$  from  $10^{\circ}C$  to  $0^{\circ}C$ .

## · So process

$$H_2O$$
, 4 grams at  $10^{\circ}C$ 
 $+$ 
 $1$  gram ice at  $0^{\circ}C$ 
 $H_2O$ , (4.5) grams at  $0^{\circ}C$ 
 $+0.5$  gram ice at  $0^{\circ}C$ 

•  $\Delta S_{process} = ?$ 

$$\Delta S_{ice} = \int \frac{dQ_{rev}}{T_{ice}} \qquad \Longrightarrow \qquad \frac{Q_{rev}}{T_{ice}} = \frac{0.5 \, g \, 80 \, cal \, g^{-1}}{273 \, K}$$

$$= 0.1465 \, cal \, K^{-1}$$

$$\Delta S_{H_2O} = \int \frac{dQ_{rev}}{T_{water}} = \int_{283}^{273} \frac{CdT}{T_{water}} = 4 \, g. \, 1 \, cal \, g^{-1} \, {}^{\circ}C^{-1} \int_{283}^{273} \frac{dT}{T_{water}}$$

$$= 4 \ln \left(\frac{273}{283}\right) \, cal \, K^{-1} = -0.1439 \, cal \, K^{-1}$$

$$\Delta S_{\text{process}} = \Delta S_{\text{ice}} + \Delta S_{\text{H}_2\text{O}}$$
  
= (0.1465 - 0.1439) cal K<sup>-1</sup>  
= 0.0026 cal K<sup>-1</sup>  
= (0.0026) (4.184 J K<sup>-1</sup>)  
= 0.0109 J K<sup>-1</sup>

1 kcal mol<sup>-1</sup> = 
$$4.184 \text{ kJ mol}^{-1}$$
  
1 kcal =  $4.184 \text{ kJ}$   
1 cal =  $4.184 \text{ J}$ 

#### Entropy changes due to change in volume

consider ideal gas & reversible isothermal expansion

Recall First Law: 
$$dE = dQ - P_{ext}dV$$
Reversible process  $\Rightarrow$  
$$dE = dQ_{rev} - P_{system}dV$$

$$= TdS - PdV$$

Isothermal expansion of ideal gas  $\Rightarrow$  dE = 0 E(T) only

Therefore 
$$TdS = PdV = \frac{nRT}{V} dV$$
 or 
$$dS = \frac{nR}{V} dV$$
 
$$\Delta S = \int_{V_i}^{V_f} \frac{nR}{V} dV = nR ln \frac{V_f}{V_i}$$

This result suggests that:

$$\frac{S_{ideal\ gas}}{perfect\ gas} = constant + nRlnV$$

However, since pV = nRT here,

$$S_{ideal\ gas} = constant + nRln\left(\frac{nRT}{P}\right)$$
$$= f(n,T) - nRlnP\ gas$$

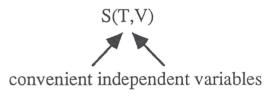
So entropy of ideal gas <u>increases</u> with an isothermal volume <u>increase</u>.

• Statement is true in general.

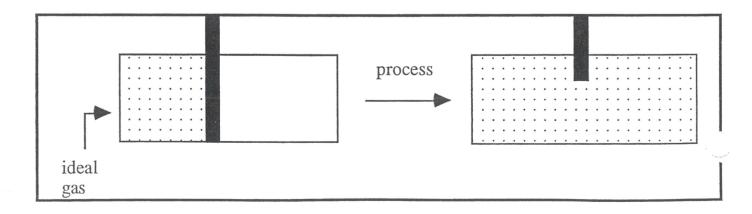
## Important Implication of Result - Entropy of Mixing

Pure substance S(N,T,V) or S(n,T,V) state function

Constant mass (closed system



 $\bullet$  So can calculate  $\Delta S$  for one of the processes considered earlier.



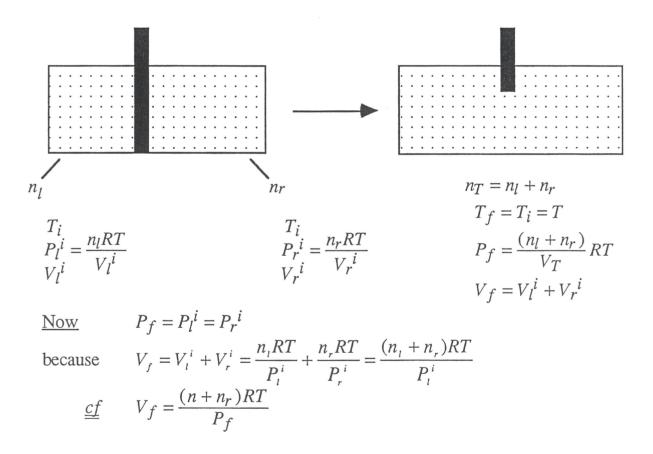
$$N_i, T, V_i$$
 $(or n_i) \uparrow$ 
 $volume accessible$ 
 $to gas molecules$ 

$$n_f = n_i = n$$

$$\therefore \Delta S_{process} = nRln \frac{V_f}{V_i}$$
 $N_f, T, V_f$ 
 $or (n_f)$ 

$$depends on initial and final states only
$$S \text{ is a state function!}$$$$

• What happens when both sides of the chamber are filled by the same ideal gas at the same pressure?



# $\Delta S_{\text{process}}$

S is an extensive property 
$$\Rightarrow$$
  $S(n,T,V)$  or  $S(n,T,P)$ 

Will later show that

$$S_{translation} = nR \left\{ f(T) + ln \frac{V}{n} \right\}$$

$$ideal\ gas$$

Note that f(T) & g(T) depend on the nature of the molecules as well, e.g. mass

or 
$$S_{translation} = nR\{g(T) - lnP\}$$
  
ideal gas

from which it follows that

$$\Delta S_{isothermal} = nRln \frac{V_f}{V_i} \quad as shown earlier.$$

$$expansion$$

$$for n moles$$

$$of ideal gas$$

Now for one process here,

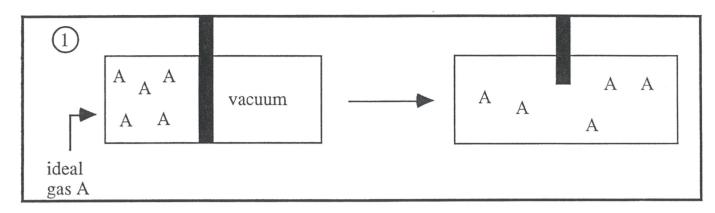
$$\begin{split} \Delta S_{process} &= S\Big(n_T, T, V_f\Big) - S\Big(n_l, T, V_l{}^i\Big) - S\Big(n_r, T, V_r{}^i\Big) \\ &= n_T R \bigg\{ f(T) + ln \frac{V_f}{n_T} \bigg\} \\ &- n_R \bigg\{ f(T) + ln \frac{V^i}{n} \bigg\} \\ &- n_r R \bigg\{ f(T) + ln \frac{V_r{}^i}{n_r} \bigg\} \\ &= 0 \qquad because \ \frac{V_f}{n_T} = \frac{V_l{}^i}{n} = \frac{V_r{}^i}{n_r} \\ ∨ \qquad P_f = P_l{}^i = P_r{}^i \end{split}$$

Could have obtained the same result as follows:

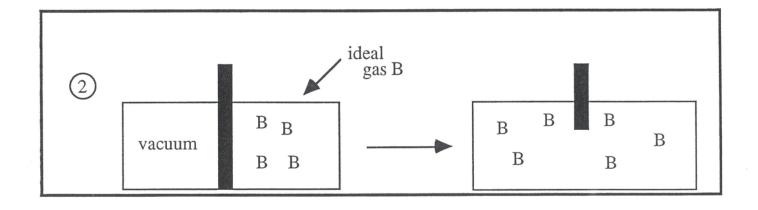
$$\begin{split} \Delta S_{process} &= S\Big(n_T, T, P_f\Big) - S\Big(n_e, T, P^i\Big) - S\Big(n_r, T, P_r^i\Big) \\ &= n_T R\Big\{g(T) - \ln P_f\Big\} \\ &- n_l R\Big\{g(T) - \ln P_l^i\Big\} \\ &- n_r R\Big\{g(T) - \ln P_r^i\Big\} \\ &= 0 \qquad because \ P_f = P_l^i = P_r^i \end{split}$$

• What happens when the two sides of the chamber are initially occupied by a different gas at the same pressure?

Process equivalent to sum of following two processes.



$$n_A$$
,  $v_i^A$   $V_f = V_T$  
$$T_i = T$$
 
$$T_f = T$$
 
$$P_i^A = \frac{n_A RT}{V_i^A}$$
 
$$P_f^A = \frac{n_A RT}{V_T}$$



Volume or phase space accessible to each of the gases per mole has increased!!

$$n_{B}$$

$$V_{i}^{B}$$

$$T_{i} = T$$

$$P_{i}^{B} = \frac{n_{B}RT}{V_{i}^{B}}$$

$$n_{B}$$

$$V_{f} = V_{T}$$

$$T_{f} = T$$

$$P_{f}^{B} = \frac{n_{B}RT}{V_{T}}$$

$$\begin{split} \Delta S_{process} &= \Delta S_A + \Delta S_B \\ &= {}^{n_{\!A}} R ln \left( \frac{V_T}{V_i{}^A} \right) \left( \frac{n_A}{\eta_A} \right) + {}^{n_{\!B}} R ln \left( \frac{V_T}{V_i{}^B} \right) \left( \frac{n_B}{\eta_B} \right) \end{split}$$

Initial pressures same 
$$\Rightarrow \frac{n_A}{V_i^A} = \frac{n_B}{V_i^B}$$

Final pressure
$$P_{f} = P_{f}^{A} + P_{f}^{B} = \frac{n_{A}RT}{V_{T}} + \frac{n_{B}RT}{V_{T}} = \left[ \left( \frac{n_{A}}{V_{i}^{A}} \right) \frac{V_{i}^{A}}{V_{T}} + \left( \frac{n_{B}}{V_{i}^{B}} \right) \frac{V_{i}^{B}}{V_{T}} \right] RT.$$

$$= \frac{n_{A}}{V_{i}^{A}} \frac{(V_{i}^{A} + V_{i}^{B})}{V_{T}} . RT = \frac{n_{A}}{V_{i}^{A}} . RT = P_{i}^{A} = P_{i}^{B}$$

$$\frac{So}{V_T} = \frac{n_A + n_B}{V_i^A} = \frac{n_B}{V_i^B}$$

or 
$$\frac{V_T}{V_i{}^A} = \frac{n_A + n_B}{n_A} = X_A{}^{-I}$$
 and 
$$\frac{V_T}{V_i{}^B} = \frac{n_A + n_B}{n_B} = X_B{}^{-I}$$

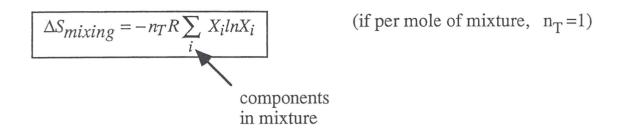
$$\therefore \Delta S_{process} = -n_A R \ln X_A - n_B R \ln X_B$$

$$= -n_T \left[ X_A R \ln X_A + X_B R \ln X_B \right] \text{ entropy of mixing}$$

$$\text{for } \Delta G_{mixing} , \text{ this require a } \underline{T} \text{ component};$$

$$\text{only both } for \text{ ideal gases } f \text{ eath}.$$

# • General Formula for Entropy of Mixing of Ideal Gases



### Entropy Changes in General

$$\Delta S_{process} = \Delta S_{system} + \Delta S_{surroundings}$$

Must always include  $\Delta S_{system} + \Delta S_{surroundings}$ .

For each part (i.e., system or surroundings), can take advantage that  $S \equiv$  entropy is a state function; i.e., S(n,T,V) or S(n,T,P)

#### First Law

$$dE = dQ - P_{ext}dV \qquad \text{(general)}$$
 
$$dE = dQ_{rev} - PdV \qquad \text{(reversible)}$$
 
$$dE = TdS - PdV \qquad \text{general}$$
 or 
$$dS = \frac{dE + PdV}{T}$$

Since we may express dE further, e.g.

$$dE = \left(\frac{\partial E}{\partial T}\right)_{V} dT + \left(\frac{\partial E}{\partial V}\right)_{T} dV$$
$$= C_{V} dT + \left(\frac{\partial E}{\partial V}\right)_{T} dV$$

$$dS = \frac{C_V}{T}dT + \frac{1}{T} \left[ \left( \frac{\partial E}{\partial V} \right)_T + P \right] dV$$

completely general!

One equation for system and another for surroundings.

· For ideal gas.

$$\left(\frac{\partial E}{\partial V}\right)_{T} = 0 \& P = \frac{nRT}{V}, \text{ so } \frac{1}{T} \left[\left(\frac{\partial E}{\partial V}\right)_{T} + P\right] = \frac{nR}{V}$$

$$\therefore dS = \frac{C_{V}}{T} dT + \frac{nR}{V} dV \qquad \text{(ideal gas)}$$
and
$$\Delta S_{ideal \ gas} = \int_{T_{i}}^{T_{f}} \frac{C_{V}}{T} dT + \int_{V_{i}}^{V_{f}} \frac{nRT}{V} dV$$

$$= C_{V} ln\left(\frac{T_{f}}{T_{i}}\right) + nR ln\left(\frac{V_{f}}{V_{i}}\right)$$

• For constant pressure processes, more convenient to recast above in terms of enthalpy H.

$$dE = TdS - pdV \qquad \text{general}$$
 
$$\underline{\text{Now}} \qquad dH = dE + pdV + VdP \qquad \text{general}$$
 
$$Combining \qquad dH = TdS + Vdp$$

Since we may express dH further, e.g.

$$dH = \left(\frac{\partial H}{\partial T}\right)_P dT + \left(\frac{\partial H}{\partial P}\right)_T dP = C_P dT + \left(\frac{\partial H}{\partial P}\right)_T dP$$

$$dS = \frac{C_P}{T} dT + \frac{1}{T} \left[\left(\frac{\partial H}{\partial P}\right)_T - V\right] dP$$

For a constant pressure process, then : is, ap = 0

$$\Delta S = \int_{T_i}^{T_f} \frac{C_p}{T} dT$$

Note that if phase changes take place during process, there exist singularities in C<sub>P</sub>, but

$$\frac{\Delta S \ phase}{transition} = \frac{1}{T} \underset{transition}{\int_{transition}} C_P dT = \frac{\Delta H_{transition}}{T_{transition}}$$

#### Cyclic Processes

For system that has undergone a complete cycle,

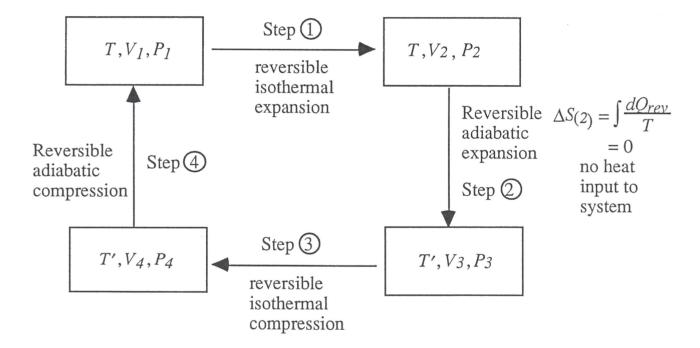
$$\Delta S_{system} = 0$$
 since  $\oint dS = 0$  & S is a state function.

But 
$$\Delta S_{system} + \Delta S_{surroundings} = \oint d_{system} + \Delta S_{surrounding}$$

≥0 depending upon whether the process is reversible or irreversible

or 
$$\oint dS_{system} + surrounding \ge 0$$

### Example (p. 89-91 text) of a cyclic process



 $\Delta S_{step} system$ 

$$nRln\bigg(\frac{V_2}{V_I}\bigg)$$

0

$$nRln\left(\frac{V_4}{V_3}\right)$$

$$\Delta S_{\substack{gas\\ system}} = nR \ln \left( \frac{V_2}{V_I} \right) + nR \ln \left( \frac{V_4}{V_3} \right)$$

Need 
$$\frac{V_2}{V_I}$$
 and  $\frac{V_4}{V_3}$ 

From step 2, adiabatic reversible expansion

$$\left(\frac{T'}{T}\right) = \left(\frac{V_2}{V_3}\right)^{nR/C_V}$$

From step 4, adiabatic reversible compression

$$\left(\frac{T}{T'}\right) = \left(\frac{V_4}{V_I}\right)^{nR/C_V}$$

or 
$$\frac{V_2}{V_3} = \frac{V_I}{V_A}$$

or 
$$\frac{V_2}{V_I} = \frac{V_3}{V_4}$$

$$\therefore \Delta S_{gas}_{system} = nRln\left(\frac{V_2}{V_I}\right) - nRln\left(\frac{V_3}{V_4}\right) = 0$$

Now 
$$Q_{system} = Q_{step\ 1} + Q_{step\ 2} + Q_{step\ 3} + Q_{step\ 4}$$

$$= nRT ln \left(\frac{V_2}{V_1}\right) + 0 + nRT' ln \left(\frac{V_4}{V_3}\right) + 0$$

$$= nRT ln \left(\frac{V_2}{V_1}\right) + nRT' ln \left(\frac{V_4}{V_3}\right) \neq 0$$

This result probably prompted Clausius to introduce S and  $dS = \frac{dQ_{rev}}{T}$ .

